Search results for " NANOSTRUCTURES"
showing 10 items of 128 documents
Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1
2018
The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…
Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions
2016
Tellurite (TeO3 2−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO3 2− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO3 2−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO3 2− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically …
Non-conventional Ce:YAG nanostructures via urea complexes
2019
AbstractCe:YAG nanostructures (Ce:YAG = Cerium in Yttrium Aluminium Garnet), easy to control and shape, have been prepared via templating approach using natural and synthetic materials (i.e. paper, cotton wool and glass wool) previously soaked with a gel-like metals precursor and then thermally treated to achieve the wished morphology. The final material, otherwise difficult to process, can be easily moulded, it is lightweight, portable and forms, at the nanoscale, homogeneous layers of interconnected but not agglomerated nanoparticles (15 ± 5 nm). Using the same synthetic route, called Urea-Glass-Route, but in absence of a template, extremely pure Ce:YAG nanoparticle (45 ± 5 nm) can be als…
Amorphous Silicon Nanotubes via Galvanic Displacement Deposition
2013
Amorphous silicon nanotubes were grown in a single step into a polycarbonate membrane by a galvanic displacement reaction conducted in aqueous solution. In order to optimize the process, a specifically designed galvanic cell was used. SEM images, after polycarbonate dissolution, showed interconnected nanotube bundles with an average length of 18 μm and wall thickness of 38 nm.The deposited silicon was revealed by EDS analysis, whilst X-ray diffraction and Raman spectroscopy showed that nanotubes have an amorphous structure. Silicon nanotubes were also characterized by photo-electrochemical measurements that showed n-type conductivity and optical gap of ~1.6 eV. Keywords: Silicon nanotubes, …
Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition
2010
Zn-doped TiO2 nanofibers shelled with ZnO hierarchical nanoarchitectures have been fabricated combining electrospinning of TiO2 (anatase) nanofibers and metal-organic chemical vapor deposition (MOCVD) of ZnO. The proposed hybrid approach has proven suitable for tailoring both the morphology of the ZnO external shell as well as the crystal structure of the Zn-doped TiO2 core. It has been found that the Zn dopant is incorporated in calcined electrospun nanofibers without any evidence of ZnO aggregates. Effects of different Zn doping levels of Zn-doped TiO2 fibers have been scrutinized and morphological, structural, physico-chemical and optical properties evaluated before and after the hierarc…
Original Approach to Synthesize TiO2/ZnO Hybrid Nanosponges Used as Photoanodes for Photoelectrochemical Applications
2021
[EN] In the present work, TiO2/ZnO hybrid nanosponges have been synthesized for the first time. First, TiO2 nanosponges were obtained by anodization under hydrodynamic conditions in a glycerol/water/NH4F electrolyte. Next, in order to achieve the anatase phase of TiO2 and improve its photocatalytic behaviour, the samples were annealed at 450 degrees C for 1 h. Once the TiO2 nanosponges were synthesized, TiO2/ZnO hybrid nanosponges were obtained by electrodeposition of ZnO on TiO2 nanosponges using different temperatures, times, and concentrations of zinc nitrate (Zn(NO3)(2)). TiO2/ZnO hybrid nanosponges were used as photoanodes in photoelectrochemical water splitting tests. The results indi…
Structural Characterization of Zirconia Nanoparticles Prepared by Microwave-Hydrothermal Synthesis
2009
Nanocrystalline zirconia powders have been prepared by microwave-hydrothermal synthesis starting from aqueous solution of ZrOCl2·8H2O. Results of investigations on the aqueous suspension stability of the washed zirconia nanopowders by dynamic light scattering showed that the suspension, constituted by superaggregates of nanoparticles (131 ± 10 nm), was stable up to 15 days. Nanopowders were investigated by means of transmission electron microscopy and small angle x-ray scattering measurements which proved that the zirconia nanopowder is constituted by small primary nanoparticles of ca. 8 nm that agglomerate forming bigger aggregates of 50 ± 1 nm.
Effect of temperature on the growth of alfa-PbO2 nanostructures
2010
Abstract Ordered arrays of α-PbO 2 nanostructures were grown by galvanostatic anodic deposition into the channels of alumina templates. Electrodepositions were performed in an aqueous solution containing lead acetate and sodium acetate at pH 5.4. Bath temperature and electrodeposition time were varied to check their effect on the growth of nanostructures. It has been found that filling of alumina pores is independent of the time and electrodeposition temperature, whilst height and growth kinetics of nanostructures vary with both parameters. Temperature greatly influences morphology: wires grown at room temperature consisted of clusters of particles, leading to poorly compact structures, whi…
Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods
2018
A novel green protocol for the deacidifying consolidation of waterlogged archaeological woods through aqueous dispersions of polyethylene glycol (PEG) 1500 and halloysite nanotubes containing calcium hydroxide has been designed. First, we prepared functionalized halloysite nanotubes filled with Ca(OH)2 in their lumen. The controlled and sustained release of Ca(OH)2 from the halloysite lumen extended its neutralization action over time, allowing the development of a long-term deacidification of the wood samples. A preliminary thermomechanical characterization of clay/polymer nanocomposites allows us to determine the experimental conditions to maximize the consolidation efficiency of the wood…
Biotechnology of Rhodococcus for the production of valuable compounds
2020
Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production o…